Centro de Investigación y de Estudios Avanzados del IPN Departamento de Matemáticas

Examen de admisión a la Maestría

17 de Agosto de 1998

1. Algebra lineal

1.1 Considere la matriz:

$$A = \left(\begin{array}{cccc} 2 & -1 & 7 & 1 \\ 1 & 2 & -4 & 1 \\ 1 & 0 & 2 & 1 \end{array}\right)$$

Encontrar una base para la imagen de la transformación lineal $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ definida por A.

1.2 Considere la matriz

$$A = \left(\begin{array}{rrr} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{array}\right)$$

Determine los valores propios de A y una base para los subespacios de vectores propios correspondientes.

1.3 Usar operaciones elementales para determinar la inversa de la matriz:

$$A = \left(\begin{array}{rrrr} 0 & 1 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

2. Cálculo

2.1 Diga si las series

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \quad y \qquad \sum_{n=0}^{\infty} \frac{2^n}{n!}$$

convergen y porqué.

2.2 Encuentre la derivada de la función F definida en [0,1] como :

(a)
$$F(x) = \int_0^x (\sin t^2) dt$$
,

(b)
$$F(x) = \int_0^{x^2} (1+t^3)^{-1} dt$$
.

2.3 Graficar la función $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por $f(x) = x^3 - 3x$ indicando extremos locales, puntos de inflexión y los intervalos que se tiene concavidad o convexidad.

3. Problemas opcionales

- 3.1 Dar un ejemplo de una función $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ no diferenciable en (0,0) cuyas derivadas parciales en (0,0) existan.
- 3.2 Sea $\{Fi\}_{i=1}^{\infty}$ una suceción de conjuntos cerrados en \mathbb{R}^n . Es $\bigcup_{i=1}^{\infty} F_i$ un conjunto cerrado en \mathbb{R}^n ?
- 3.3 Sea A una matriz de orden n. Si $A^t = -A$ y n es impar demostrar que det A = 0. Recordar que A^t denota la transpuesta de A.
- 3.4 Sean (X_1, d_1) y (X_2, d_2) espacios métricos y sea $X = X_1 \times X_2$ (el producto Cartesiano). Demostrar que la función $d: X \longrightarrow \mathbb{R}$ definida por

$$d((x_1,x_2),\!(x_1',x_2')) = d_1(x_1,x_1') + d_2(x_2,x_2')$$

es una métrica en X.

3.5 Sea $(\mathbb{Z}_n, +)$ el grupo aditivo de los enteros módulo n. Es el producto cartesiano $\mathbb{Z}_2 \times \mathbb{Z}_4$ isomorfo a \mathbb{Z}_8 ?